Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Fully and partially fluorinated flavone derivatives

Akiko Horia ${ }^{\mathrm{a}, \mathrm{b} *}$ and Kohei Naganuma ${ }^{\mathrm{a}}$

${ }^{\text {a }}$ School of Science, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa 228-8555, Japan, and bPRESTO, JST, Honcho 4-1-8, Kawaguchi, Saitama, Japan Correspondence e-mail: hori@kitasato-u.ac.jp

Received 25 March 2010
Accepted 11 April 2010
Online 21 April 2010
In the crystal structures of the fully and partially fluorinated flavone derivatives 5,6,7,8-tetrafluoro-2-(2,3,4,5,6-pentafluoro-phenyl)-4 H -1-benzopyran-4-one, $\mathrm{C}_{15} \mathrm{HF}_{9} \mathrm{O}_{2}$, (I), and 5,6,7,8-tetrafluoro-2-phenyl-4H-1-benzopyran-4-one, $\mathrm{C}_{15} \mathrm{H}_{6} \mathrm{~F}_{4} \mathrm{O}_{2}$, (II), the pentafluorophenyl group and the pyranone moiety in (I) are twisted due to repulsion of the F substituents, and a $\mathrm{CO}\left(\delta^{-}\right) \cdots \pi\left(\delta^{+}\right)$intermolecular interaction is observed between the carbonyl O atom and the pentafluorophenyl group. In (II), on the other hand, the phenyl group and the pyranone moiety are almost coplanar, and arene-perfluoroarene interactions are observed in the head-to-tail intermolecular columnar stacking between the phenyl group and the tetrafluorophenylene moiety.

Comment

Flavone derivatives are one of the very important yellow pigments in natural plants. In particular, related compounds with the flavone framework have been widely investigated as unique biologically active reagents (Havsteen, 1983; Das \& Rosazza, 2006). More than 100 flavone derivatives and nine naphthoflavone derivatives were found in a search of the Cambridge Structural Database (CSD, Version 5.30 of November 2008; Allen, 2002) and the crystal structure of flavone was determined by Waller et al. (2003). However, only two kinds of fluorinated flavone derivatives have been reported to date, namely 3-[1-(2,2-dimethylhydrazinylidene)-ethyl]-6,7-difluoro-2-phenyl-4H-1-benzopyran-4-one (Vales et al., 2001) and 3-(4-fluorophenyl)-1 H-naphtho[2,1-b]pyran-1one (Neuman et al., 1989). We report here the first perfluorinated derivatives of the flavone framework, synthesized in order to understand the influence of fluorination effects on molecular structure and crystal packing, viz. 5,6,7,8-tetra-fluoro-2-(2,3,4,5,6-pentafluorophenyl)-4H-1-benzopyran-4-one, (I), and 5,6,7,8-tetrafluoro-2-phenyl-4H-1-benzopyran-4-one, (II).

Fully fluorinated aromatic compounds show an interaction with anionic species (Quiñonero et al., 2002) and/or aromatic hydrocarbons (Patrick \& Prosser, 1960; Williams, 1993; Hori et
al., 2009), based on reversal of the charge orientation of the quadrupole moments compared with aromatic compounds. Accordingly, compounds (I), (II) and the nonfluorinated flavone (Waller et al., 2003) show completely different arrangements in these molecular packings. For example, three kinds of electrostatic interactions, viz. dipole $-\pi$, areneperfluoroarene and $\pi-\pi$ interactions, are predominantly observed in (I), (II) and flavone, respectively.

Flavone

(I)

(II)

The molecular structures of (I) and (II) are shown in Fig. 1. The structure of (II) exhibits full-molecule disorder, with siteoccupancy ratios of 0.938 (2) and 0.062 (2), respectively, for components A and B; only the major component, A, is shown here. In Fig. 2, the relationship between the disordered

Figure 1
The molecular structure of (I) (top) and that of component A of (II) (bottom), both at 100 K , showing the atom-labelling schemes. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
The major A (solid lines) and minor B (open lines) components of (II); the occupancy of component B is $6.2(2) \%$. Displacement ellipsoids are drawn at the 50% probability level.
components A and B is shown. The minor B component is related to the major A component by an approximate twofold rotation about the molecular length. This sort of disorder is often found in planar molecules with weak intermolecular contacts (Ferguson et al., 1999). Hereinafter, we only discuss the major component, i.e. A. The hydrogen-bond geometries of (I) and component A of (II) are summarized in Tables 1 and 2 , respectively. Selected bond lengths and angles for (I), component A of (II) and flavone (two crystallographically independent molecules, denoted flavone-1 and flavone-2) are given in Table 3.

In the molecular structure of (I), the benzopyranone ring system (rings A and C) is planar and the r.m.s. deviation of atoms $\mathrm{C} 1-\mathrm{C} 9 / \mathrm{O} 1$ is $0.018 \AA$. The pentafluorophenyl group and the pyranone moiety are highly twisted with respect to each other and the dihedral angle between the planes of the two rings defined by atoms $\mathrm{C} 10-\mathrm{C} 15$ (ring B) and $\mathrm{C} 1-\mathrm{C} 3 / \mathrm{O} 1 / \mathrm{C} 4 /$ C5 (ring C) is 52.78 (4) (Fig. 1). On the other hand, in component A of (II), the phenyl group and the pyranone moiety are almost coplanar and the dihedral angle between the planes of the two rings defined by rings B and C is $7.88(8)^{\circ}$, the benzopyranone ring system also being planar (the r.m.s. deviation of the ten atoms is $0.015 \AA$). The difference in twist angles can be explained by the steric repulsion introduced by the F-substituent at atom C 15 in (I). The carbonyl double bonds in (I) and component A of (II) are slightly but significantly more localized than those in nonfluorinated flavone (Table 3). The $\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 6$ angles in the fluorinated compounds, viz. (I) and component A of (II), are larger than those of nonfluorinated flavone. This is considered to be due to basic steric effects and electrostatic repulsion between atoms O 2 and F 1 . Due to the influence of the F substitution at F 1 , the $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$ and $\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 4$ angles of the two fluorinated compounds are smaller than those of the nonfluorinated flavone (Table 3). The r.m.s. deviations of the structural overlay (Macrae et al., 2006) of the 12 atoms in the benzopyranone ring system (C1-C10/O1/O2) in (I), (II) and flavone are small, e.g. $0.04 \AA$ between (I) and flavone- 1 and (I) and flavone-2, and $0.03 \AA$ between (II) and flavone-1, (II) and flavone-2, and (I) and (II).

Figure 3
A view of part of the crystal structure of (I), viewed approximately along the c axis.

Figure 4
A view of part of the crystal structure of (II), viewed approximately along the a axis, showing the intermolecular columnar stacking through areneperfluoroarene interactions.

Figure 5
A view of part of the crystal structure of flavone, viewed approximately along the a axis, showing the head-to-head stacking through the phenyl groups (Waller et al., 2003).

The crystal packings of (I), (II) and flavone are quite different, as shown in Figs. 3, 4 and 5, respectively. In the crystal structure of (I), no remarkable intermolecular $\pi-\pi$ stacking is observed for either the pentafluorophenyl group or the pyranone moiety, while the π planes of the pentafluorophenyl (B) and tetrafluorobenzopyranone $(A$ and $C)$ rings are arranged in an antiparallel manner. Carbonyl atom O2 at (x, y, z) interacts closely with a pentafluorophenyl group at $\left(x+\frac{1}{2}\right.$, $-y+\frac{1}{2}, z-\frac{1}{2}$) and, vice versa, the pentafluorophenyl group at (x, y, z) interacts with carbonyl atom $\mathrm{O}_{2}{ }^{\mathrm{iii}}$ [symmetry code:
(iii) $x-\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$]; the $\mathrm{O} 2 \cdots C g B^{\text {iv }}$ distance [symmetry code: (iv) $\left.x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}\right]$ is 2.9228 (15) \AA, where $C g B$ is the centroid of pentafluorophenyl ring B. Thus, the negative charge orientation of the O atom and the positive charge of the centroid of the fluorinated ring interact, which can be classified as a dipole $-\pi$ interaction. Accordingly, the molecules are in a head-to-tail arrangement diagonally in the ac plane. Intermolecular $\mathrm{C}-\mathrm{F} \cdots \pi$ interactions are also observed, with distances F4 $\cdots C g B^{\mathrm{iii}}, \mathrm{F} 6 \cdots C g A^{\mathrm{v}}$ and F9 $\cdots C g C^{\text {vi }}$ [symmetry codes: (v) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (vi) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$] between the F atoms and the ring centroids of 3.0765 (13), 3.1580 (13), and 3.1332 (13) \AA, respectively. Intermolecular interactions induced by fluorination are also observed, which are the weak C2-H2 \cdots F5 $5^{\text {i }}$ hydrogen bond (Desiraju, 1996; Thalladi et al., 1998) [symmetry code: (i) $x+1, y, z$; Table 1] and the dipoledipole interaction between $\mathrm{C} 1=\mathrm{O} 2$ and $\mathrm{C} 9^{\mathrm{i}}-\mathrm{F} 4^{\mathrm{i}}$ [the $\mathrm{C} 1 \cdots \mathrm{~F}^{\mathrm{i}}$ and $\mathrm{O} 2 \cdots \mathrm{C} 9^{\mathrm{i}}$ short intermolecular distances are 2.973 (2) and 2.916 (2) Å, respectively].

Intermolecular $\pi-\pi$ interactions are clearly observed in the crystal structures of (II) and flavone, which are highly planar molecules. Both structures show remarkable $\pi-\pi$ stacking to give columns of molecules (Figs. 4 and 5). Within the columns, the carbonyl $\mathrm{C}=\mathrm{O}$ groups are arranged in an interdigitating manner by dipole-dipole repulsion in both structures. However, the structures of (II) and flavone are clearly different in the relative orientation of neighboring molecules within the columns. In (II), phenyl group B and tetrafluorophenylene moiety A interact closely by head-to-tail arrangement of the molecules, clearly showing an areneperfluoroarene interaction; the intermolecular distances between the two centroids of the rings, $\mathrm{CgC} \cdots \mathrm{Cg} C^{\text {vii }}$ [symmetry code: (vii) $-x+2,-y+1,-z+2]$ and $C g A \cdots C g B^{\text {viii }}$ [symmetry code: (viii) $\left.-x+1,-y+1,-z+2\right]$, are 3.5015 (11) and 3.5371 (12) \AA, respectively. The perpendicular distances from the ring centroids to the adjacent planes are 3.3605 (6) and 3.4481 (6) \AA, respectively. In contrast, in the flavone structure, the phenyl groups are overlapped by a head-to-head arrangement of the flavone molecules (Waller et al., 2003), showing $\pi-\pi$ stacking; the intermolecular distances $C g C \cdots C g C^{\text {ix }}$ [symmetry code: (ix) $x+\frac{1}{2},-y+\frac{3}{2},-z+1$] and $C g B \cdots C g B^{\text {ix }}$ are 3.7904 (15) and 3.8128 (15) \AA, respectively; the perpendicular distances from the ring centroids to the adjacent planes are 3.4176 (7) and 3.4707 (7) \AA, respectively. Thus, the phenyl group preferentially interacts with the tetrafluorophenylene moiety through an arene-perfluoroarene interaction, as opposed to interacting with another phenyl group through a $\pi-\pi$ interaction. In addition, the weak intermolecular $\mathrm{C} 12 A-\mathrm{H} 12 A \cdots \mathrm{~F} 2 A^{\mathrm{ii}}$ hydrogen bond [symmetry code: (ii) $\left.x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}\right]$ is observed in (II), as shown in Table 2. Intermolecular $\mathrm{C}-\mathrm{F} \cdots \pi$ interactions are also observed in (II), viz. C6 $A-\mathrm{F} 1 A \cdots C g B^{\text {vii }}$, with $\mathrm{F} 1 A \cdots C g B^{\text {vii }}=$ 3.3769 (16) \AA and $\mathrm{C} 6 A-\mathrm{F} 1 A \cdots C g B^{\text {vii }}=86.32(9)^{\circ}$.

Experimental

The two title fluorinated flavone derivatives were obtained from the elimination process of the corresponding dibenzoylmethanide deri-
vatives. Crystals of (I) and (II) were obtained in poor yield from the synthetic processes involving bis(pentafluorobenzoyl)methane and benzoyl(pentafluorobenzoyl)methane, respectively (Uhlemann et al., 1972; Hori et al., 2009). The compounds were crystallized by slow evaporation from an MeOH solution to give crystals suitable for X-ray crystallography.

Compound (I)

Crystal data

$\mathrm{C}_{15} \mathrm{HF}_{9} \mathrm{O}_{2}$
$M_{r}=384.16$
Monoclinic, $P 2_{1} / n$
$a=6.2221$ (7) \AA
$b=25.234$ (3) A
$c=8.4624$ (9) \AA
$\beta=95.355(1)^{\circ}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.939, T_{\text {max }}=0.987$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.094$
$S=1.05$
2998 reflections

Compound (II)

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{6} \mathrm{~F}_{4} \mathrm{O}_{2}$
$M_{r}=294.20$
Monoclinic, $P 2_{1} / n$
$a=7.5400$ (11) \AA
$b=6.4742$ (10) \AA
$c=23.920$ (4) \AA
$\beta=94.635(2)^{\circ}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.955, T_{\text {max }}=0.985$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.094$
$S=1.03$
2654 reflections
238 parameters
$V=1322.8(2) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.30 \times 0.20 \times 0.06 \mathrm{~mm}$

14615 measured reflections 2998 independent reflections 2433 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$

235 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.31$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.20 \mathrm{e}^{-3}$
$V=1163.9$ (3) \AA^{3}
$Z=4$
Mo K α radiation
$\mu=0.15 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

6192 measured reflections 2654 independent reflections 1979 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

For the disordered structure of (II), after refinement of the major component with unit occupancy, it was noted in a difference map in the molecular plane that there were a large number of small maxima in the $0.2-0.7$ e \AA^{-3} range, which could be seen to be a minor component of (II) related to the major component by an approximate twofold rotation about the molecular length. The various minor peaks were labelled B atoms in exact correspondance with the major

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots 5^{\mathrm{i}}$	0.95	2.42	$3.3126(19)$	157

Symmetry code: (i) $x+1, y, z$.

Table 2
Hydrogen-bond geometry $\left({ }^{\circ},{ }^{\circ}\right)$ for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12 A-\mathrm{H} 12 A \cdots \mathrm{~F} 2 A^{\mathrm{ii}}$	0.95	2.48	$3.198(2)$	132
Symmetry code: (ii) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$				

Table 3
Selected bond distances ((\AA) and angles $\left({ }^{\circ}\right)$ for (I), component A of (II), and flavone.

	(I)	Component A of (II)	Flavone-1 \dagger	Flavone-2 \dagger
$\mathrm{C} 1-\mathrm{O} 2$	$1.220(2)$	$1.224(2)$	$1.235(2)$	$1.232(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.452(2)$	$1.445(2)$	$1.445(2)$	$1.448(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.339(2)$	$1.342(2)$	$1.353(2)$	$1.354(2)$
$\mathrm{C} 5-\mathrm{C} 1$	$1.478(2)$	$1.478(2)$	$1.476(2)$	$1.475(2)$
$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 6$	$124.03(15)$	$124.13(16)$	$122.29(16)$	$121.82(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$	$113.86(14)$	$114.13(16)$	$114.69(15)$	$114.18(15)$
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 4$	$118.08(12)$	$119.06(13)$	$119.26(13)$	$119.10(13)$

\dagger Two crystallographically independent molecules, denoted flavone- 1 and flavone-2, are observed at 150 K (Waller et al., 2003).
A component. Refinement then continued with the major and minor occupancies refined as linked free variables, with similarity restraints (SAME command in SHELXL97; Sheldrick, 2008) employed to force the geometry of the minor component to conform with that of the major component. Atoms of the minor B component were refined isotropically, with one global $U_{\text {iso }}$ value for the ring atoms and another $U_{\text {iso }}$ value for the exocyclic atoms. In both (I) and (II), all H atoms were placed in geometrically idealized positions and refined as riding, with aromatic C $-\mathrm{H}=0.95 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

For both compounds, data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported in part by a Kitasato University Research Grant for Young Researchers.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG3163). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Das, S. \& Rosazza, J. P. N. (2006). J. Nat. Prod. 69, 499-508.
Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.
Ferguson, G., Glidewell, C., Gregson, R. M. \& Lavender, E. S. (1999). Acta Cryst. B55, 573-590.
Havsteen, B. (1983). Biochem. Pharmacol. 23, 1141-1148.
Hori, A., Shinohe, A., Takatani, S. \& Miyamoto, T. K. (2009). Bull. Chem. Soc. Jpn, 82, 96-98.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Neuman, A., Becquart, J., Gillier, H., Leroux, Y., Queval, P. \& Moretti, J. L. (1989). Acta Cryst. C45, 1966-1970.

Patrick, C. R. \& Prosser, G. S. (1960). Nature (London), 187, 1021.
Quiñonero, D., Garay, C., Rotger, C., Frontera, A., Ballester, P., Costa, A. \& Deyà, P. M. (2002). Angew. Chem. Int. Ed. 41, 3389-3392.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Thalladi, V. R., Weiss, H.-C., Blaser, D., Boese, R., Nangia, A. \& Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702-8710.

Uhlemann, E., Motzny, H. \& Wilke, G. (1972). Z. Chem. 12, 267-268.
Vales, M., Lokshin, V., Pepe, G., Samat, A. \& Guglielmetti, R. (2001). Synthesis, pp. 2419-2426.
Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. \& Hambley, T. W. (2003). Acta Cryst. E59, o767-o768.

Williams, J. H. (1993). Acc. Chem. Res. 26, 593-598.

